深度學(xué)習(xí)FPGA實(shí)現(xiàn)基礎(chǔ)知識0FPGA擊敗GPU和GPP 最近幾年,深度學(xué)習(xí)成為計(jì)算機(jī)視覺、語音識別、微鯨用未來之家引發(fā)對未來的思考。自然語言處理等關(guān)鍵領(lǐng)域中所最常使用的技術(shù),被業(yè)界大為關(guān)注。然而,深度學(xué)習(xí)模型需要極為大量的數(shù)據(jù)和計(jì)算能力,只有更好的硬件加速條件,才能滿足現(xiàn)有數(shù)據(jù)和模型規(guī)模繼續(xù)擴(kuò)大的需求?,F(xiàn)有的解決方案使用圖形處理單元(GPU)集群作為通用計(jì)算圖形處理單元(GPGPU),但現(xiàn)場可編程門陣列(FPGA)提供了另一個(gè)值得探究的解決方案。日漸流行的FPGA設(shè)計(jì)工具使其對深度學(xué)習(xí)領(lǐng)域經(jīng)常使用的上層軟件兼容性更強(qiáng),使得FPGA更容易為模型搭建和部署者所用。FPGA架構(gòu)靈活,使得研究者能夠在諸如GPU的固定架構(gòu)之外進(jìn)行模型優(yōu)化探究。同時(shí),F(xiàn)PGA在單位能耗下性能更強(qiáng),這對大規(guī)模服務(wù)器部署或資源有限的嵌入式應(yīng)用的研究而言至關(guān)重要。本文從硬件加速的視角考察深度學(xué)習(xí)與FPGA,指出有哪些趨勢和創(chuàng)新使得這些技術(shù)相互匹配,并激發(fā)對FPGA如何幫助深度學(xué)習(xí)領(lǐng)域發(fā)展的探討機(jī)器學(xué)習(xí)對日常生活影響深遠(yuǎn)。無論是在網(wǎng)站上點(diǎn)擊個(gè)性化推薦內(nèi)容、去除高清視頻鋸齒幾個(gè)方法。在智能手機(jī)上使用語音溝通,或利用面部識別技術(shù)來拍照,都用到了某種形式的人工智能技術(shù)。這股人工智能的新潮流也伴隨著算法設(shè)計(jì)的理念轉(zhuǎn)變。過去基于數(shù)據(jù)的機(jī)器學(xué)習(xí)大多是利用具體領(lǐng)域的專業(yè)知識來人工地“塑造”所要學(xué)習(xí)的“特征”,計(jì)算機(jī)從大量示例數(shù)據(jù)中習(xí)得組合特征提取系統(tǒng)的能力,則使得計(jì)算機(jī)視覺、企業(yè)宣傳片制作語音識別和自然語言處理等關(guān)鍵領(lǐng)域?qū)崿F(xiàn)了重大的性能突破。對這些數(shù)據(jù)驅(qū)動(dòng)技術(shù)的研究被稱為深度學(xué)習(xí),如今正受到技術(shù)界兩個(gè)重要群體的關(guān)注:一是希望使用并訓(xùn)練這些模型、從而實(shí)現(xiàn)極高性能跨任務(wù)計(jì)算的研究者,二是希望為現(xiàn)實(shí)世界中的新應(yīng)用來部署這些模型的應(yīng)用科學(xué)家。然而,他們都面臨著一個(gè)限制條件,即硬件加速能力仍需加強(qiáng),才可能滿足擴(kuò)大現(xiàn)有數(shù)據(jù)和算法規(guī)模的需求對于深度學(xué)習(xí)來說,目前硬件加速主要靠使用圖形處理單元(GPU)集群作為通用計(jì)算圖形處理單元(GPGPU)。相比傳統(tǒng)的通用處理器(GPP),GPU的核心計(jì)算能力要多出幾個(gè)數(shù)量級,也更容易進(jìn)行并行計(jì)算。尤其是NVIDIA CUDA,作為最主流的GPGPU編寫平臺(tái),各個(gè)主要的深度學(xué)習(xí)工具均用其來進(jìn)行GPU加速。最近,開放型并行程序設(shè)計(jì)標(biāo)準(zhǔn)OpenCL作為異構(gòu)硬件編程的替代性工具備受關(guān)注,而對這些工具的熱情也在高漲。雖然在深度學(xué)習(xí)領(lǐng)域內(nèi),OpenCL獲得的支持相較CUDA還略遜一籌,但OpenCL有兩項(xiàng)獨(dú)特的性能。首先,OpenCL對開發(fā)者開源、免費(fèi),不同于CUDA單一供應(yīng)商的做法。其次,OpenCL支持一系列硬件,包括GPU、GPP、現(xiàn)場可編程門陣列(FPGA)和數(shù)字信號處理器(DSP)作為GPU在算法加速上強(qiáng)有力的競爭者,F(xiàn)PGA是否立即支持不同硬件,顯得尤為重要。FPGA與GPU不同之處在于硬件配置靈活,且FPGA在運(yùn)行深入學(xué)習(xí)中關(guān)鍵的子程序(例如對滑動(dòng)窗口的計(jì)算)時(shí),單位能耗下通常能比GPU提供更好的表現(xiàn)。不過,設(shè)置FPGA需要具體硬件的知識,許多研究者和應(yīng)用科學(xué)家并不具備,正因如此,F(xiàn)PGA經(jīng)常被看作一種行家專屬的架構(gòu)。最近,F(xiàn)PGA工具開始采用包括OpenCL在內(nèi)的軟件級編程模型,使其越來越受經(jīng)主流軟件開發(fā)訓(xùn)練的用戶青睞對考察一系列設(shè)計(jì)工具的研究者而言,其對工具的篩選標(biāo)準(zhǔn)通常與其是否具備用戶友好的軟件開發(fā)工具、是否具有靈活可升級的模型設(shè)計(jì)方法以及是否能迅速計(jì)算、以縮減大模型的訓(xùn)練時(shí)間有關(guān)。隨著FPGA因?yàn)楦叱橄蠡O(shè)計(jì)工具的出現(xiàn)而越來越容易編寫,其可重構(gòu)性又使得定制架構(gòu)成為可能,同時(shí)高度的并行計(jì)算能力提高了指令執(zhí)行速度,F(xiàn)PGA將為深度學(xué)習(xí)的研究者帶來好處對應(yīng)用科學(xué)家而言,盡管有類似的工具級選擇,但硬件挑選的重點(diǎn)在于最大化提高單位能耗的性能,從而為大規(guī)模運(yùn)行降低成本。所以,F(xiàn)PGA憑借單位能耗的強(qiáng)勁性能,加上為特定應(yīng)用定制架構(gòu)的能力,就能讓深度學(xué)習(xí)的應(yīng)用科學(xué)家受益FPGA能滿足兩類受眾的需求,是一個(gè)合乎邏輯的選擇。本文考察FPGA上深度學(xué)習(xí)的現(xiàn)狀,以及目前用于填補(bǔ)兩者間鴻溝的技術(shù)發(fā)展。因此,本文有三個(gè)重要目的。首先,指出深度學(xué)習(xí)領(lǐng)域存在探索全新硬件加速平臺(tái)的機(jī)會(huì),而FPGA是一個(gè)理想的選擇。其次,勾勒出FPGA支持深度學(xué)習(xí)的現(xiàn)狀,指出潛在的限制。最后,對FPGA硬件加速的未來方向提出關(guān)鍵建議,幫助解決今后深度學(xué)習(xí)所面臨的問題傳統(tǒng)來說,在評估硬件平臺(tái)的加速時(shí),必須考慮到靈活性和性能之間的權(quán)衡。一方面,通用處理器(GPP)可提供高度的靈活性和易用性,但性能相對缺乏效率。這些平臺(tái)往往更易于獲取,可以低廉的價(jià)格生產(chǎn),并且適用于多種用途和重復(fù)使用。另一方面,專用集成電路(ASIC)可提供高性能,但代價(jià)是不夠靈活且生產(chǎn)難度更大。這些電路專用于某特定的應(yīng)用程序,并且生產(chǎn)起來價(jià)格昂貴且耗時(shí)FPGA是這兩個(gè)極端之間的折中。FPGA屬于一類更通用的可編程邏輯設(shè)備(PLD),并且簡單來說,是一種可重新配置的集成電路。因此,F(xiàn)PGA既能提供集成電路的性能優(yōu)勢,又具備GPP可重新配置的靈活性。FPGA能夠簡單地通過使用觸發(fā)器(FF)來實(shí)現(xiàn)順序邏輯,并通過使用查找表(LUT)來實(shí)現(xiàn)組合邏輯?,F(xiàn)代的FPGA還含有硬化組件以實(shí)現(xiàn)一些常用功能,例如全處理器內(nèi)核、通信內(nèi)核、運(yùn)算內(nèi)核和塊內(nèi)存(BRAM)。另外,目前的FPGA趨勢趨向于系統(tǒng)芯片(SoC)設(shè)計(jì)方法,即ARM協(xié)處理器和FPGA通常位于同一芯片中。目前的FPGA市場由Xilinx主導(dǎo),占據(jù)超過85%的市場份額。此外,F(xiàn)PGA正迅速取代ASIC和應(yīng)用專用標(biāo)準(zhǔn)產(chǎn)品(ASSP)來實(shí)現(xiàn)固定功能邏輯FPGA市場規(guī)模預(yù)計(jì)在2016年將達(dá)到100億美元對于深度學(xué)習(xí)而言,F(xiàn)PGA提供了優(yōu)于傳統(tǒng)GPP加速能力的顯著潛力。GPP在軟件層面的執(zhí)行依賴于傳統(tǒng)的馮?諾依曼架構(gòu),指令和數(shù)據(jù)存儲(chǔ)于外部存儲(chǔ)器中,在需要時(shí)再取出。這推動(dòng)了緩存的出現(xiàn),大大減輕了昂貴的外部存儲(chǔ)器操作。該架構(gòu)的瓶頸是處理器和存儲(chǔ)器之間的通信,這嚴(yán)重削弱了GPP的性能,尤其影響深度學(xué)習(xí)經(jīng)常需要獲取的存儲(chǔ)信息技術(shù)。相比較而言,F(xiàn)PGA的可編程邏輯原件可用于實(shí)現(xiàn)普通邏輯功能中的數(shù)據(jù)和控制路徑,而不依賴于馮?諾伊曼結(jié)構(gòu)。它們也能夠利用分布式片上存儲(chǔ)器,以及深度利用流水線并行,這與前饋性深度學(xué)習(xí)方法自然契合?,F(xiàn)代FPGA還支持部分動(dòng)態(tài)重新配置,當(dāng)FPGA的一部分被重新配置時(shí)另一部分仍可使用。這將對大規(guī)模深度學(xué)習(xí)模式產(chǎn)生影響,F(xiàn)PGA的各層可進(jìn)行重新配置,而不擾亂其他層正在進(jìn)行的計(jì)算。這將可用于無法由單個(gè)FPGA容納的模型,同時(shí)還可通過將中間結(jié)果保存在本地存儲(chǔ)以降低高昂的全球存儲(chǔ)讀取費(fèi)用最重要的是,相比于GPU,F(xiàn)PGA為硬件加速設(shè)計(jì)的探索提供了另一個(gè)視角。GPU和其它固定架構(gòu)的設(shè)計(jì)是遵循軟件執(zhí)行模型,并圍繞自主計(jì)算單元并行以執(zhí)行任務(wù)搭建結(jié)構(gòu)。由此,為深度學(xué)習(xí)技術(shù)開發(fā)GPU的目標(biāo)就是使算法適應(yīng)這一模型,讓計(jì)算并行完成、淺談生態(tài)攝影心得。確保數(shù)據(jù)相互依賴。與此相反,F(xiàn)PGA架構(gòu)是為應(yīng)用程序?qū)iT定制的。在開發(fā)FPGA的深度學(xué)習(xí)技術(shù)時(shí),較少強(qiáng)調(diào)使算法適應(yīng)某固定計(jì)算結(jié)構(gòu),從而留出更多的自由去探索算法層面的優(yōu)化。需要很多復(fù)雜的下層硬件控制操作的技術(shù)很難在上層軟件語言中實(shí)現(xiàn),但對FPGA執(zhí)行卻特別具有吸引力。然而,這種靈活性是以大量編譯(定位和回路)時(shí)間為成本的,對于需要通過設(shè)計(jì)循環(huán)快速迭代的研究人員來說這往往會(huì)是個(gè)問題除了編譯時(shí)間外,吸引偏好上層編程語言的研究人員和應(yīng)用科學(xué)家來開發(fā)FPGA的問題尤為艱難。雖然能流利使用一種軟件語言常常意味著可以輕松地學(xué)習(xí)另一種軟件語言,但對于硬件語言翻譯技能來說卻非如此。企業(yè)宣傳片制作針對FPGA最常用的語言是Verilog和VHDL,兩者均為硬件描述語言(HDL)。這些語言和傳統(tǒng)的軟件語言之間的主要區(qū)別是,HDL只是單純描述硬件,企業(yè)宣傳片制作而例如C語言等軟件語言則描述順序指令,并無需了解硬件層面的執(zhí)行細(xì)節(jié)。中國游客滯留成田機(jī)場日方有話說,有效地描述硬件需要對數(shù)字化設(shè)計(jì)和電路的專業(yè)知識,盡管一些下層的實(shí)現(xiàn)決定可以留給自動(dòng)合成工具去實(shí)現(xiàn),但往往無法達(dá)到高效的設(shè)計(jì)。因此,研究人員和應(yīng)用科學(xué)家傾向于選擇軟件設(shè)計(jì),因其已經(jīng)非常成熟,擁有大量抽象和便利的分類來提高程序員的效率。這些趨勢使得FPGA領(lǐng)域目前更加青睞高度抽象化的設(shè)計(jì)工具有人或許以為訓(xùn)練機(jī)器學(xué)習(xí)算法的過程是完全自動(dòng)的,實(shí)際上有一些超參數(shù)需要調(diào)整。對于深度學(xué)習(xí)尤為如此,模型在參數(shù)量上的復(fù)雜程度經(jīng)常伴隨著大量可能的超參數(shù)組合。可以調(diào)整的超參數(shù)包括訓(xùn)練迭代次數(shù)、學(xué)習(xí)速率、批梯度尺寸、隱藏單元數(shù)和層數(shù)等等。調(diào)整這些參數(shù),等于在所有可能的模型中,挑選最適用于某個(gè)問題的模型。傳統(tǒng)做法中,超參數(shù)的設(shè)置要么依照經(jīng)驗(yàn),要么根據(jù)系統(tǒng)網(wǎng)格搜索或更有效的隨機(jī)搜索來進(jìn)行。最近研究者轉(zhuǎn)向了適應(yīng)性的方法,用超參數(shù)調(diào)整的嘗試結(jié)果為配置依據(jù)。其中,貝葉斯優(yōu)化是最常用的方法不管用何種方法調(diào)整超參數(shù),目前利用固定架構(gòu)的訓(xùn)練流程在某種程度上局限了模型的可能性,也就是說,我們或許只在所有的解決方案中管窺了一部分。固定架構(gòu)讓模型內(nèi)的超參數(shù)設(shè)置探究變得很容易(比如,隱藏單元數(shù)、層數(shù)等),但去探索不同模型間的參數(shù)設(shè)置變得很難(比如,模型類別的不同),因?yàn)槿绻鸵粋€(gè)并不簡單符合某個(gè)固定架構(gòu)的模型來進(jìn)行訓(xùn)練,就可能要花很長時(shí)間。相反,F(xiàn)PGA靈活的架構(gòu),可能更適合上述優(yōu)化類型,因?yàn)橛肍PGA能編寫一個(gè)完全不同的硬件架構(gòu)并在運(yùn)行時(shí)加速。